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ABSTRACT

This paper makes two important contributions to the theory of bandwidth

selection for kernel density estimators under right censorship. First, an

asymptotic representation of the integrated squared error into easily

understood variance and squared bias components is given. Second, it is shown

that if the bandwidth is chosen by the data-based method of least squares !

cross-validation, then it is asymptotically optimal in a compelling sense. A .

by-product of the first part is an interesting comparison of the two most

popular kernel estimators.
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1. INTRODUCTI(N

Kernel-type estimators of an unknown probability density function from

right-censored data have been studied recently by several authors (e.g. Blum

and Susarla, 1980; Diehl and Stute, 1985; Fbldes, Rejto and Winter, 1981;

McNichols and Padgett, 1985; and Stute, 1985). Padgett and McNichols (1984)

gave a review of available results on kernel density estimation from censored

data. The details of the forms of these estimators are in section 2.

As in the complete sample (i.e. uncensored) case, the choice of the

smoothing parameter, or bandwidth, is crucial to the effective performance of

the estimator. Intuitively, if the bandwidth is too small, there is too much

"variance" in the sense that features which belong only to the particular data

set, and not to the underlying density, may be seen in the estimate. If the

bandwidth is too large, there is too much "bias" in the sense that features of

the density are smoothed away.

In the complete sample case, an elegant mathematical quantification of the

above intuition may be found in Rosenblatt (1956), Parzen (1962), Watson and

Leadbetter (1963), and Rosenblatt (1971). In particular, they show that the

Mean Integrated Squared Error (MISE) has an asymptotic decomposition as a

simple variance term, a simple squared bias term, and some negligible terms.

In section 3 it is seen how this type of decomposition may be done in the case

of randomly right-censored data. Along the way, approximations are found for

the two most popular censored-data kernel estimators which give insight into

exactly how they are related. 13

While this asymptotic representation of MISE provides considerable

insight, it is not very useful for selecting the bandwidth because the

S
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minimizer of the two dominant terms contains quantities which are harder to

estimate than f itself. As this is also true in the complete sample case,

there has recently been considerable work done there on data-based bandwidth

selectors. One of the most promising methods is least squares cross-

validation, introduced by Rudemo (1982) and Bowman (1984). The bandwidth

selected in this way has been shown to be asymptotically optimal under various

conditions by Hall (1983), Stone (1984), Burman (1985), Hall (1985), and Marron

(1985). Deeper asymptotic properties are established in Hall and Marron

(1985a,b).

In section 4, it is shown that least squares cross-validation is also

effective in the case of right-censored data. In particular, asymptotic

optimality, in the same sense as for the complete sample case, is established.

Section 5 contains the proofs. Finally, a practical method for choosing

between the two different common kernel estimators is suggested.

2. THE ESTIMATORS

The two best known kernel density estimators are based on estimates of

distribution functions. In the censored data case, a widely used distribution

function estimator is defined as follows.

Let X0 X0 denote the i.i.d. survival times of n items or

individuals that are censored on the right by i.i.d. random variables

Ul,...,Un which are independent of the X°'s. Denote the common distribution

function of the Xi s by F and that of the Ui's by H. Let H - 1-H. Itj is assumed that F°  is absolutely continuous with density f and that H is

continuous.

The observed randomly right-censored data ere denoted by the pairs

. *,
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(Xiai), i-l,...,n, where

xi  -min{Xf,Ui) and Ai - [xi  Ui]

with 1 ] denoting the indicator random variable of the event [.].

Based on (XiAi), i-l,...,n, a popular estimator of the survival

function 1-F°(t) is the product-limit (PL) estimator, proposed by Kaplan and

Meier (1958) and shown to be "self-consistent" by Efron (1967). Let

(ZiAi), i-l,...,n, denote the ordered Xi's along with their corresponding

ai's. The PL estimator of 1-F°(t) is defined by

1, 0< t< z1  r

k n-i A.
Pn(t) - (n_-i-) Zk_1 < t < Z3 , k-2,...,n,

0, >t>z .n

Denote the PL estimator of F°(t) by Fn(t) - 1-Pn(t), and let s. denote the
'n Pn j

jump of Pn (or Fn) at Zj, that is

s. - n(Zj) - Pn(Zj+ ), j-2,...,n-1

Pn(Zn )'  j-n.

Then for j < n, s -0 if and only if A. - 0, that is, Z. is a censored

observation. For various properties of the PL estimator, see Breslow and

Crowley (1974), Cs6rgo and Horvath (1983), F61des and Rejt6 (1981), Fl61des,

Rejt6 and Winter (1980), Gill (1983), and Wellner (1982), among others.

The distribution function estimator, Fno is very naturally used to

construct a density estimator by defining

4
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fn x) - h - jm K( )dFn (X)

-n x-Z.- h-l 1 s_ K¢---1 ).
- h j-1

This estimator has been studied by Foldes, Rejto and Winter (1981), McNichols

and Padgett (1986), Diehl and Stute (1985), and Stute (1985).

An alternative kernel estimator has been proposed by Blum and Susarla

(1980), extending the results of Rosenblatt (1976) to censored data. It is

motivated by the fact that a reasonable (and technically easy to handle) esti-

mate of f°(x)H*(x) is given by
1n x-X.

H ~j-1 j

0n 
ft•

Hence, it makes sense to estimate f (x) by (f H )n(x) divided by an estimate
0

of H (x). If we reverse the intuitive roles played by X.° and U, then the1

product-limit estimator for H is given by

1, o<t <z

k-1 n. 1-A.H I -1 1
Hnlt) - ,n-i+l , Zk- < t < Zk, k-2,...,n

i.1
.' 0, t > Zn ,.nn

This does not make a good denominator because it takes on the value zero, so

Blum and Susarla propose changing Hn slightly to

1, 0< t < Z1 ,

k-I n-i+l 1-A( F n--i+l2 , N t < Zk, k-2,...,n,

n 1n-i+ll-A

in-i+2 , Zn < t.

A

7p
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Hence, define
* -x-x.

fn(x) " [nhHn(X)1 j- K(h )[Aj1].

To get some idea for what the relationship is between the estimators fn

and fn' note that from Susarla, Tsai, and Van Ryzin (1984) for each j,

I- A knHn(Z j)]- . Hence, we may write:

n A. x-X.
fn(X) - K( (2.1)

n h

j-1 nH n(Xj )h"'

, n a. x-X.

(x) E K(- h. (2.2)j-1 nffn(X)h

Since Hn and Hn  are essentially the same, the only significant difference

between the estimators is the argument of the estimate of H . It will be seen

in the next section that the difference is typically not negligible.

It will be assumed throughout that K is a probability density with

compact support and that K is H6ider continuous. In addition, h 4 0 and

*nh 4 as n 4 -. Letting TG a supft: G(t) < 1) for a distribution function
G0

G, it is assumed that TH < TFO < - and that f°H* is H6lder continuous of

order v > 0.

3. ASYMPTOTIC REPRESENTATIC4

The main idea of this section is that fn(x) and fn(x) are essentially

the same as

n A. x-X.n(x)- E , K( ) (3.1)
j-i nH (X)h

j-1 nH (xh

respectively, because the convergence of Hn and Hn to H is faster (-n

n n]
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than that of the density estimators (often - 6-2/5 ). Essentially, the same

idea has been used by Diehl and Stute (1985) and Stute (1985). For f equal

to any of fn' n n' or !n' we choose to analyze its performance by studying

the Integrated Squared Error, ISE(f) - ;o[f(x) - fo(x)]2w(x)dx, where w(x)

is a nonnegative weight function.

There are two major reasons for working with ISE instead of with its

expected value, MISE. First, ISE is a more compelling error criterion because

it assesses how well f is doing for the data set at hand, instead of only for

the average over all possible data sets as is done by MISE. Second, ISE is

more natural for the automatic bandwidth selection results of the next section.

It should be pointed out that by using methods slightly easier than those used

here, all of our results can be formulated in terms of MISE. Also, there is an

obvious extension of the theorems of this section to the pointwise convergence

of the estimators when it is assessed by the Mean Square Error.

The role of the weight function, w, is to eliminate endpoint effects.

Assume in particular that w is bounded and supported on [0,T], where

T<T H.
W -l+C -C

The statement of the theorem will be uniform over h c [n ,n -,

some c > 0. This is necessary for the automatic bandwidth selection results

of section 4.
0 0

Theorem 3.1. Under the conditions on K, f H*, F° , fo, and H stated in

p 1+Csection 2, for h c [n ,n7'], we have

SU I ISE(fn(X))-[ani-lh-l+blanl~ ~ ~ . 32

ISE(fn(x))-[an- h- +b*

sup -1 - *- 0 a.s.,
h an h +b

",;.;,'.,'''..' ,.'",' , .,,ISE ," '"- f,'" ',x,)""-[anI'h:,"'+b,"-. - o " ", . ,"-• .,I-..- .,. "I "..-"."'.-,
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where

a- (JK2 ) f w)

H

and where b, b are defined by

b - j B(x,h)2w(x)dx,

b* - x B, h)2 w(x) 2 -

[H W.

B(x,h) - I K(u)[f0(x-hu)-f 0(x)ldu,

B (x,h) - I K(u)[f°(x-hu)gt*(x-hu)-f (x)H*(x)Jdu.

Remark 3.1. Note that an immediate consequence of Theorem 3.1 is the ISE

consistency of fn and fn"

Remark 3.2. The only difference in the asymptotic representations of ISE

shows up in the bias part. Note that for some choices of f0 and H , b

will be smaller, while for other choices, b will be smaller. Hence, the

estimators f and n are really not comparable from this representation.

However, note that, by an addition-subtraction,

B (xh) . K(u)fO(xhu) H+ B(x,h).
* I Kdx

H (x) H (x)

So in a weak sense, fn has an extra "noise term", which may make fn slightly

preferable.

Rates of convergence may be computed in the usual manner of Rosenblatt and

*. Parzen. Further, Theorem 3.1 yields an asymptotic bandwidth which is optimal

in the same sense as the bandwidths of Rosenblatt and Parzen except that the

random error criterion ISE is used in place of its mean. This is given in the

next remark.

Remark 3.3. (i) It is well known in the complete sample case that by allowing

K to take on negative values, a faster rate of convergence can be obtained.

e

. . . . . . . .. .* * * .*.* *. . . . . .. ., . . . . . *** * .. ... i>
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Theorem 3.1 demonstrates that the same is true here. In particular, suppose
i , j-0,

I xJK(x)dx - 0, j-l,...,k-t, (3.3)

K, j-k,

(for k > 2, this violates the assumptions of Theorem 3.1; however it is

straightforward, but space-consuming, to modify the proofs to allow for this).

If we assume that fo and f H have k uniformly continuous derivatives,

then
h2k( 2 fo(k) 2..

b h (.) f[ () I2w dx + o(h2k)

2k K 2 o (k)]2 w 2kb h[ () f[(fH*) - dx + o(hk).(H) 2

Hence, for the estimator fn' the "classical optimal bandwidth" has the form

0r
K2  f w ]l/(2k+l)

hH n-i/( 2k+l)
h0" K ~2f0 )(k) 2 Jn(0.,) [ ( fo )w] .

k!o

and the rate of convergence is ISE - n-2k/(2k+l) Here and in the following

remarks, there are obvious analogues for the estimator fn"

To see how Theorem 3.1 implies that h behaves like the optimal band-0
width of Rosenblatt and Parzen (the complete sample case), define

- 1  .2  0  2kK ,2 (k)

EI 0 = n-h-l[fK2][--L+n (. ] W.
H

By (3.2), with obvious notation,

ISE(f ,h)-EI 0(h)
suap n 0 a.s.h EI0 (h)

Let hM  denote the minimizer of ISE(fn ,h) and recall that ho is the

minimizer of E10(h). Then from the inequalities ISE(fn h0 ) ISE(fnlhM).

and EI0 (hM) _ EI0 (h0), it follows that
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I ISE(fn,ho)-ISE(fn,hM) C ISE(fn h0 )-EI0(h0) EI0(h0)
ISE(fn,h0 ) EI 0(h0 ) ISE( fnh 0)

+ ISE( fn"M )-EI 0 (hM) E0(h1M)
+EI 0(h M )  ISE( fn, hM)

40 a.s.

Hence,

ISE(f ,h0)
-01 a.s.,

inf ISE(f ,h)
h

which shows that h0  is optimal in the same sense as the bandwidths of

Rosenblatt and Parzen, except for the fact that the random ISE criterion is

used in place of its mean.

Remark 3.3. (ii) If we keep the assumption (3.3), but suppose fo has p < k

derivatives (p need not be an integer by putting a Hb1der condition of order

p-[p] on the [p]-th derivative, where [.] denotes the greatest integer less

than or equal to p), then it can be shown that b* < C h2p  for some positive

constant C. Hence, by taking h - n - / (2p+ ) , the well-known (see, for

example, Bretagnolle and Huber (1979)) "optimal rate," ISE n-

can be obtained for our censored data problem.

4. AUTOMATIC BANDWIDTH SELECTION

For data-based bandwidth selection, we propose least-squares cross-valida-

tion, which was invented, for complete sample density estimators, by Rudemo

(1982) and Bowman (1984). This is motivated as follows. Let f denote

either fn or f* Since the third term ofn n"

ISE(f) - I f2w - 21 ffw + J(fO)2w

is independent of h, we would like to choose h to minimize the sum of the

first two terms. The first term is known. The integral of the second term can

.. . ). .. .. .. , -... ,. . . . . . . .. . . . -. . .*. .. . ... ...-. ** *...-
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be unbiasedly estimated by

- 1 n. w(x i )
n Z fi(Xi) 1 1[ i-i(X) ii-l .nlX1

where f. is the "leave-one-out" version of f, given by
1X-X.

f n,i(x) - 1 [A 1ijoi (n-l)Hn(X j )h h j-1]

when f is fn' and by
1 x-X.

fn,i(x)- E 1h )l[Aj1]

jAi (n-l)H (x)h

when f is f n Thus, we define hc  to be the minimizer of the least-squares

cross-validation criterion
A 2 n A w(X.)

CV(h) - I [f(x)]2w(x)dx - 2n -I  1C V ~ ) n f i (X i ) * 1l [ 6i- i ] •
i-i Hn (Xi) 

Theorem 4.1. Under the conditions of Theorem 3.1, hc  is asymptotically

optimal in the sense that

ISE(fh c 41 a.s.

inf ISE(f,h)
h

Remark 4.1. Theorem 4.1 says that hc is optimal under either of the

assumptions stated in Remark 3.3 (i) or Remark 3.3 (ii). This generalizes

the important asymptotic optimality results of Hall (1983), Stone (1984),

Burman (1985), Hall (1985), and Marron (1985) to the case of censored data.

Remark 4.2. The fact that CV(h) essentially provides an estimate of

ISE(f,h) suggests a practical method of choosing between fn and f*. In
n

particular, if CV(h) for f - f is smaller than CV(h) for f - f*n' then
n n

the estimator f n should be used, as its ISE will probably be smaller.
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5. PROOFS OF THEOREMS

All proofs are given for the estimator fn(x), as it will be obvious how
*

to adapt them to handle fn(x). The symbol C will be used for a generic

constant. Note first that, using the notation (3.1), by adding and subtracting

n X),

ISE(f) - ISE(? n ) + II + III, (5.1)

where

II - 2 J [fn(x) - fo(x)][fnlx)-7n(x)] w(x)dx,

III [ fn(X)-Tn(x )]2 w(x)dx.

Proof of Theorem 3.1. We analyze each of the terms ISE(?n), II, and III
n

". separately, First, by a "variance-bias squared" decomposition, and standard

computations of the type in Rosenblatt (1971),

MISE(T ) m E(ISE( n)) - v + b, (5.2)
n n

where

vn-lh-ll[K2)(T ---w) + o(n-lh-l),(5)

H
and where b is defined in section 3. The fact that ISE(?n ) behaves like

n

MISE(Zn ) is contained in the following lemma.
IS( n)-MI SE (T )

Lemma i. sup I n n 0 a.s.
h MISE( nn

The fact that term III is negligible is contained in

Lemma 2. sup 111 0.
h MISE( nn

It follows from the Schwartz Inequality, Lemma 1, and Lemma 2 that III

may be replaced by II in the statement of Lemma 2.

This last fact, together with (5.1), (5.2), (5.3), Lemma 1, and Lemma 2

S%
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complete the proof of Theorem 3.1.

Before proving Theorem 4.1, we give the proof of Lemas 1 and 2.

Proof of Lema 1. Let N - #(Ai-1). For v-1,...,n, conditioning on [N-v],
1i

{Xi: Ai-1) is a set of v i.i.d. random variables with density f H /p,_

where

p- f0(x)H (x)dx.

Let E denote expectation under this conditional distribution. The method of
EV

the proof of Theorem 1 of Marron and Hirdle (1986) shows that, under the stated

assumptions, for k-1,2,..., there exist constants C > 0 and y > 0 so that

su [ ISE(? n)-E V(ISE(? n)) 2k< CT-k.(54

h E (ISE( n))

To analyze E (ISE(?n)), note first that

E n(x) - fO(x) - "

-n

Hyh Pf ()H y

- I K(u)[ f°(x-hu) - folx)]dunp

VV 0-- (x,h) + (--1)f (x),np np

where B(x,h) was defined in section 3. Next note that

2 n 1 x-X
Ev[Tnl(x)-Evn(x )] - var [ , hl .1]i-l nH (X.)h

S1 x-X.V vat r K(----)

n H (Xi )h
V- -l h-11j I 2) fo(x)+ ( nl-.

np HIx) np

Thus, by a "variance-bias squared" decomposition,

E (ISE(?n)) - v + bV n V v



*~~ ~ ~~ *7 1y671rL "..T. -. r~ - -

13p

where
V -lh-1
-- v+o(-n h ),V np np

for v defined in (5.3), and where

b - (L) 2b + 2(L)(L -1) 1 B(xh)f0(x)w(x)dx

+ (L -1)2J ; fOx 2 w(x)lx,

np 0

for b as in section 3. Hence,

E (ISE(? )) - MISE(' ) + (n- -1)v + O(nV n-1h - )

V n n np np

+ ((Y ) -1)b + 2 .(!- --1) 1; B(xh)f°(x)w(x)dx
np np np 0

+ (2L -1) 2 f; fow 2 l~xdx-
np 0

Now for small T > 0 and for n-1,2,3,..., restrict attention to v

-+' +between np-n and np+ nh . For such v, - < 2 andnp -

np

for a constant C . It follows from (5.2) and (5.3) that, for a different

value of C, and for n sufficiently large,

inf MISE(7n )  C n-I+ C. (5.5)
h n

Hence, for small T, large n, and another C,

SU- E V n (ISE(?n))-MISE(n-n)  < cn-e+2-

h I MISE(T
n

Thus, for such v, from (5.4),

sup E [ ISE(?n)-MISE(7n) 2k < c n-yk

h MISE( n)

Now, let rn be a subset of In- + C, n- '] so that successive members of

rn are separated by a distance less than or equal to n p and so that i
(rn) < nP for some p > 0. Then, using obvious notation,

, , .. , . ..- , .., ... - ., , .., .: ...-...-: I
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P Isup E(Ih)-MISE(T'h)
hEU MISE(In h) - E

<p pn ISE(? n h)-MISE(I n'h) ]
- Su MISE( % h) _ 1

[ ISE(In h)-MISE(In h) ISE(Y n h')- M SE( n h') ]
P1 nI T >IT

P IhSh(_n- MIMISE( n,h')

. "n"p(_ )' "n-vP [ p -p [Sup -I('h-S(nh) >

,.-0 vher n  MISE( 'n h)2

where the last equality comes from a continuity argument and the assumptions

that K is H6lder continuous and has compact support. Letting

- [nrip - n +", np+ n J+Tl,An,-r

P[suP ISE(Tn'h)-MISE( Tn'h) >

MISE(n'h) ]

< n pn" (T 1 "n-v P [Su ISE(In'h)-MISE('n'h) 1

n )p (l-p ) n->

v%

n E (TI Pv[r ISE(7n,h)-MISE(T ,h) >< E p (1-p) E 2 + 2#(-n t)
hern  IISE(!n 1 h)

,Jrn

0t

I.
a . ,.---- .,. .-.-'. .._ ,-; ', .".. . .:. .-, v --- ". ""- -..... ..-. . -. "-p,.-. *,". *,".- --'..-i, .', : - <" '.'/ -
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(fl fl- p 2k ,h-MISE(T ,h) 2k-
r n )pV(1-p) n(2)2k sup ISE(nh) n + 2(-n

VIA n-rVh MISE(! % h) J

< C n~n-yk+ 24(-nr), (5.6).

where I denotes the standard normal cdf. But, for k sufficiently large,

the first term on the right side of (5.6) is sumiable on n, and, since the

second term is also sumnable on n, the proof of Lena 1 is complete.

Proof of Lenma 2. Using the assumption on the support of w, and using the

compactness of the support of K, observe that for n sufficiently large,

n 1 1 X x-X.

sup up up ( H (x)] 2w(x)dx),

tc[O,T' %(t) H (t) h

where T' - (T+TH)/2, and where (f°H*)n was defined in section 2. Lenma 2

is now a consequence of the results of Cs6rgo and Horvith (1983) together

with (5.5) and the fact that there is a constant C so that

sup [0 [(foH*)n(x)]2w(x)dx < C a.s. (5.7)
h

To verify (5.7), note that by adding and subtracting f°(x)H*(x),

" 12

[(fO* ...2 U + V + W,
H(fH )n(x)] w(x)dx

where

U 0 [(fOH*)n- f°H*]2 w(x)dx,

7.%

,q

.~ ... .*
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V - 21 [(fOH*) n - f°H*][fH*]w(x)dx,

W - I [fo H 2 w(x)dx.

Now W is deterministic and independent of h. An argument similar to (but

slightly easier than) that used above on ISE(?n) gives

sup u -4 0 a.s. ''

h

An application of the-Schwartz inequality to V yields (5.7), which completes

the proof of Lenma 2.

Proof of Theorem 4.1. Here again, only the proof in the slightly harder case

of f - n is given. We note that by a computation similar to that used to

verify Remark 3.3 (i), Theorem 4.1 follows from (3.2) and the result that
ICV(h)-ISE(f ,h)-[CV(h')-ISE(f n,h' )]

sup 4 0 a.s. (5.8)
h,h' MISE(fn h) + MISE(fn,h,)

To prove (5.8) it is enough to show that

n f°(Xi)w(Xi)
ICV(h)-ISE(fnh)-2[n- E H*(X) 1 [a0 2w

SUPi- n 1
uph MISE(fn h)

40 a.s.

This may be rewritten as

[ 2 _1 n~ ) _ 1 n
12n'l(n-1' E E U.. I

i-i isi
SUP MISE(f ,h) -~0 a.s.,
h n

where

.5 ~~-l 1 (..l) W(Xi) 1

U. i. K(j
i-1 #i1 0 )~.

h (xi )H (xi [A i-x, j- l

T-OK (- 3.) f lx)w(x)
h H (Xj) [A jl]
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f°(X )w(Xi)HlXi) ([.-11 + [f °(x) 2w(x)dx
flXi 11]

SU!'. + Z..,
iJ 1j

defining

X.-X w(Xi
1. j h K(h H*(X.)H*(Xi) (A.-1,A.1 ]

rX-X. 0

- Th-K(-- "') f (x)w(x) dx 1h Kn(Xi1  i[ -

f(Xi)w(Xi)H*(Xi ) [ i-1] + f[f x)] 2w(x)dx

and
°m"" [h-rx X-X. w(X.) lA'

Z. .- i'K(X-X) 1 1x'
h l 1*( )

f f0(X.)w(X )1 1 1
1 [w( i n1]IIH*(X.) H*(X.) I

Theorem 2.2 then follows from the two lemmas:

Lemma 3.
In-l(n-1) E E U!.1

sup -0 a.s.
h MISE(f,h)

"- Lenna 4.
E Z.

"" i-i isi i]
sup ^-0 a.s.
h MISE(f,h)

Proof of Lemma 3. This proof combines the ideas of Lemma 2 of Marron (1985)

with those of the proof of Lemma 1 above. Recall that in the proof of Lemma 1,

the notation meant expected value taken over [Xi: 6i-l), conditioned on

• ".
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the event {N-v)}. The censored observations [Xi: Ai-0} were ignored in the

definition of E since they did not appear in the quantities being analyzed.

The censored X 's do appear in the following, so it will be understood that
P

E denotes expected value as above, only also conditioned on [X.: A.-0) (or,

equivalently, E denotes integration over [Xi: Ai-l), which are i.i.d

random variables with density f°H*/p).

For v - 1,...,n, U'.- .. + Z, where

U h X.-X. wX )

V -i Xxi w(x) f0 lx)dx i[-l -.- - h K(----) H*(x) [6 -

f0lXi )w(Xi.) +__
- H*(X i) +np [f()2xdx"

and
' V - x_ wlx) fO(x)d 1

f 0 (X i_____ 0
)v np x n H(x

and( L -1 [h(O 1 W(l fflxdx]

Using the method of proof of Lemma 2 of Marron (1985), it can be shown that,

for k-1,2,..., and n sufficiently large,

n n 1 (n-) 1 E U.12k" s u p E i j i < C n -i k  I
I -l*~ j1 -yk ISup MISE(f,h) '

regardless of the realization of (Xi: Ai-0}. In a similar manner (i.e.,
approximate Hn W by H (x), including another n- 1 term, and using the

' x)np

cumulant-style argument of Marron (1985)), we can obtain

n-1 n
n r ZV 12ksup E v- < C

hMISE(f,h) _ - k

. -.
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These two inequalities may now be used in a computation similar to that yield-

ing (5.6) in the proof of Lemma 1 to finish the proof of Lemma 3.

Proof of Lemma 4. Write

In-l(n-l)-I E E Z .Ii joi i

1
SIn- z 1fni(Xi)_folxi))[ 1

< In- Z [fni(Xi)-f°(Xi)] 2 i[ ]w(Xi))1- i 1i" 1

1 12X n-1[1 - 1w(X i)). (5.9)

The expression inside the first square-root on the right-hand side of (5.9) is

the "leave-one-out" version of the average squared error and will be denoted

by ASE(f ni). Using the methods of Lemma 1 of Marron (1985) and Theorem 2 of

Marron and Hirdle (1986), it can be shown that for k-1,2,... there is a

constant C so that

[ASE( f )-MISE(f ,h) 12k
E MISE(fn,h) < C n-k

The proof of Lemma 4 is then completed by a computation like that leading to

(5.6) in the proof of Lemma 1, which includes the uniform convergence result
,

for the product-limit estimator H used in the proof of Lemma 2.
n

. . . .
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